Poloxamer-based binary hydrogels for delivering tramadol hydrochloride: sol-gel transition studies, dissolution-release kinetics, in vitro toxicity, and pharmacological evaluation
نویسندگان
چکیده
In this work, poloxamer (PL)-based binary hydrogels, composed of PL 407 and PL 188, were studied with regard to the physicochemical aspects of sol-gel transition and pharmaceutical formulation issues such as dissolution-release profiles. In particular, we evaluated the cytotoxicity, genotoxicity, and in vivo pharmacological performance of PL 407 and PL 407-PL 188 hydrogels containing tramadol (TR) to analyze its potential treatment of acute pain. Drug-micelle interaction studies showed the formation of PL 407-PL 188 binary systems and the drug partitioning into the micelles. Characterization of the sol-gel transition phase showed an increase on enthalpy variation values that were induced by the presence of TR hydrochloride within the PL 407 or PL 407-PL 188 systems. Hydrogel dissolution occurred rapidly, with approximately 30%-45% of the gel dissolved, reaching ~80%-90% up to 24 hours. For in vitro release assays, formulations followed the diffusion Higuchi model and lower K(rel) values were observed for PL 407 (20%, K(rel) = 112.9 ± 10.6 μg · h(-1/2)) and its binary systems PL 407-PL 188 (25%-5% and 25%-10%, K(rel) =80.8 ± 6.1 and 103.4 ± 8.3 μg · h(-1/2), respectively) in relation to TR solution (K(rel) =417.9 ± 47.5 μg · h(-1/2), P<0.001). In addition, the reduced cytotoxicity (V79 fibroblasts and hepatocytes) and genotoxicity (V79 fibroblasts), as well as the prolonged analgesic effects (>72 hours) pointed to PL-based hydrogels as a potential treatment, by subcutaneous injection, for acute pain.
منابع مشابه
In vitro Release Kinetics Study of Diltiazem Hydrochloride from Wax and Kollidon SR Based Matrix Tablets
Extended-release matrix tablets of diltiazem hydrochloride (DTZ) were prepared using waxy materials alone or in combination with Kollidon SR. Matrix waxy materials were carnauba wax (CW), bees wax (BW), cetyl alcohol (CA) and glyceryl monostearate (GMS). Dissolution studies were carried out by using a six stations USP XXII type 1 apparatus. The in vitro drug release study was done in 1000 ml ph...
متن کاملIn vitro Release Kinetics Study of Diltiazem Hydrochloride from Wax and Kollidon SR Based Matrix Tablets
Extended-release matrix tablets of diltiazem hydrochloride (DTZ) were prepared using waxy materials alone or in combination with Kollidon SR. Matrix waxy materials were carnauba wax (CW), bees wax (BW), cetyl alcohol (CA) and glyceryl monostearate (GMS). Dissolution studies were carried out by using a six stations USP XXII type 1 apparatus. The in vitro drug release study was done in 1000 ml ph...
متن کاملPreparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles
Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...
متن کاملEvaluation of in vitro dissolution profile comparison methods of sustained release tramadol hydrochloride liquisolid compact formulations with marketed sustained release tablets.
The aim of the present work was to prepare and evaluate sustained release liquisolid compact formulations of tramadol hydrochloride. The dissolution profile of the prepared compacts was also compared to that of a marketed preparation. Liquisolid sustained release formulations were prepared by using HPMC K4M as a sustained release agent. Precompression studies of characteristics such as flow pro...
متن کاملOptimization and evaluation of astragalus polysaccharide injectable thermoresponsive in-situ gels
The objective of this study was to develop an injectable in situ forming gel system based on Poloxamer for sustained release of Astragalus polysaccharide (APS), thus achieved once or twice administration instead of frequent dosing during long-term treatment. The optimal formulation is 10 g APS, 18 g poloxamer 407, 2 g poloxamer 188, 0.15 g CMC-Na, 0.85 g sodium chloride in 100 ml gel in situ wh...
متن کامل